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Abstract 0 The classical two-compartment open model implies that 
if the dose is progressively raised the amount of drug transferred to 
tissue is directly proportional to dose. A nonlinear model consid- 
ered in this report assumes that the amount of drug transferred to 
tissue is a curvilinear function of dose due to a limited capacity of 
the tissue to bind drug. Simulated (CJ) data, generated from the 
nonlinear equation appropriate t o  the model, were found to be fit 
perfectly or almost perfectly to a double-exponential equation. 
The usual interpretation would lead to assignment of the classical 
two-compartment open model. The data reported emphasize the 
concept that with the limitations of assay sensitivity, several dif- 
ferent doses of a drug need to be administered intravenously to  
elaborate the appropriate pharrnacokinetic model. 

Kegphrases 0 Model, open, classical linear two compartment- 
equations relative to erroneous assignment of nonlinear data 0 
Pharmacokinetic models-erroneous assignment of nonlinear data 
to classical linear two-compartment open model, equations 0 
Drug transfer-linear two-compartment open model, erroneous 
assignment of nonlinear data 

Deviations from linearity in pharmacokinetics may 
occur due to the absorption process, distribution, tissue 
binding and plasma protein binding of the drug, met- 
abolic processes, and excretory processes. Kriiger- 
Thiemer (1) summarized the majority of these deviations 
so they will not be presented here. 

There is much experimental evidence that many drugs 
bind to tissues. The drug-tissue “reaction” may be one 
or more of chemical combination (i.e., covalent bond- 
ing), simple electrostatic or van der Waals-type binding, 
complexation, adsorption of the drug on the surface of 
the cells, etc. It is also obvious that a limited amount of 
each tissue can bind a given drug and the amount of 
drug that can be taken up by a given tissue is related to 
some type of affinity constant. The classical two-com- 
partment open model does not take this into considera- 
tion, since the model assumes distribution between the 
two compartments is controlled by two first-order rate 
constants. Hence, the classical model really implies that 
if the dose is progressively raised the amount of drug 
transferred to  tissue is directly proportional to the dose. 

There is also increasingly more evidence that follow- 
ing intravenous injection of many drugs the binding of 
the drug by the tissue is extremely rapid and the debind- 
ing, or release of drug from the bound state, is a much 
slower process. For example, Drach el al. (2)  reported 
that within 1 min. after intravenous injection of di- 
phenhydramine to the rhesus monkey, a large portion of 
the dose was bound to tissue, where it presumably was 
slowly metabolized and/or the metabolites of the drug 
were slowly returned to  plasma. Within 3 min. after 
intravenous injection of indocyanine green, hepatic up- 
take of the dye in the rat was apparently near comple- 
tion (3). Although the authors evaluated their data by 

relating the rate of uptake to  the dose by the Michaelis- 
Menten equation, the same data may equally well have 
been explained by relating the amount of drug taken 
up by the liver to the dose. The nonlinear kinetics for 
kanamycin concentration in perilymph from the scala 
vestibuli of guinea pigs, reported by Stupp et al. (4), and 
the uptake of bromsulfalein by the reticulo-endothelial 
system, reported by Tovey ( 5 ) ,  could also probably be 
explained in a similar manner. In studies with rats given 
2-, 5-, 7.5, lo-, and 25-mg./kg. doses of methylene blue 
by rapid intravenous injection, an average of 29.8 of 
the dose (range 25.2-35.8 %) was recovered in only four 
tissues (heart, lung, liver, and kidney) when the animals 
were sacrificed 3 min. after injection (6). 

A generalized nonlinear pharmacokinetic model was 
elaborated by DiSanto and Wagner and published by 
Wagner (7). This model takes into account the nonlinear 
tissue binding of drug to one or more tissues associated 
with each of two fluid compartments. The model in- 
corporates concepts similar to those utilized by other 
investigators (1, 8-13), but many of the equations de- 
rived are distinctly different than those derived by these 
authors. Kriiger-Thiemer et al. (11) discussed and il- 
lustrated curvature of a semilogarithmic plot of terminal 
total plasma concentration of a drug against time. The 
cause of the curvature in this case was assigned to  strong 
plasma protein binding of the drug. They derived an 
equation, which is similar in form but not the same as 
Eq. 1 of this report, when symbols are redefined and 
plasma protein binding is involved rather than tissue 
binding. Many drugs are either loosely bound or not 
bound at all to  plasma proteins but are highly tissue 
bound. For such drugs the semilogarithmic plot of ter- 
minal total plasma concentrations of drug uersus time 
may also be curved in an analogous manner. However, 
the curvature, even after relatively “high” doses i n  a 
clinical sense, may not be observed due to  limitations of 
assay sensitivity. It is this point we want to emphasize in 
this report. 

Simulated data in this report show that in such cases 
“plasma concentrations” following several doses of 

Scheme I-Heterogeneous one-compartment open model with binding 
to one type of tissue. For bolus intravenous injection, dA/dt = 0. 
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Table I-Data Simulated with the One-Compartment-One-Tissue Model According to Eq. 1, with Co Varied, and Fitted by NONLIN 
to the Classical Two-Compartment Open Model (Weighted Reciprocally). 

~~~~ 

-Variables- c Estimated Parameters of Classical Model 
Doseb, co 7 kizr k.1, k2ir VI 1 --Measures of Fit- 
mg./kg. mcg./ml. hr.-l hr.-] hr.-‘ l./kg. r 2c Corr.d 

29.90 50 0.450 2.32 0.453 0.597 1 000 1.000 
(0.017)8 (0.018) (0.020) (0.003) 

14.76 20 0.738 1.86 0.540 0.748 1 000 1.000 
(0.034) (0.023) (0.028) (0.007) 

9.55 10 0.852 1.41 0.626 0.985 1.000 1 .ooo 
(0.048) (0.024) (0.038) (0.01 3) 

6.67 5 0.755 1 .oo 0.693 1.39 1.000 1 .O00 
(0.044) (0.016) (0.041) (0.016) 

4.33 2 0.441 0.624 0.696 2.22 1 .ooo 1.000 
(0.024) (0.006) (0.034) (0.01 6) 

3 .OO 1 0.242 0.455 0.655 3.03 1.000 1.000 
(0.010) (0.002) (0.023) (0.01 1) 

1.917 0.5 0.122 0.358 0.606 3.85 1.000 1.000 
(0.004) (0.001 ) (0.01 7) (0.006) 

a Parameters of tissue binding model used to simulate data were A = 10.0. B = 1.0, K = 2.75, and V = 0.5; CO assigned: 50., 20.. 10.. 5..  2. ,  I . ,  
and 0.5. Dose was calculated according to Eq. 2. Coefficient of determination. d Correlation coefficient for regression of predlcted and observed 
(i.e., simulated) C values. e Standard deviation of the estimated parameter. 

“drug” may be fit perfectly by the double-exponential 
equation appropriate to the classical two-compartment 
open model for bolus intravenous injection. It is also 
shown that if only one or two doses of such a drug were 
administered intravenously, one could erroneously 
conclude that this linear classical model applied. How- 
ever, if five doses of the drug were administered, trends 
in the estimated parameters as a function of dose and 
inconstancy of the plasma clearance would indicate an 
inappropriate model. The fact that simulated data, 
generated from a simple nonlinear equation, may be 
fit perfectly by a double-exponential equation, when the 
parameters of the nonlinear equation are in a certain 
space, seems worthy of note. The data reported empha- 
size the concept that with the limitations of assay sensi- 
tivity, several different doses of a drug need to  be ad- 
ministered intravenously to  elaborate the appropriate 
pharmacokinetic model. 

EXPERIMENTAL 

When there is only one type of fluid and one type of tissue, the 
generalized model of DiSanto and Wagner (7) is greatly reduced 
(Scheme I )  and leads to the nonlinear equation shown as Eq. 1 for 
the intravenous case: 

In Eq. 1, C represents the concentration of drug in the fluid volume 
(and is analogous to the plasma concentration of drug), CO repre- 
sents the initial concentration at  time zero immediately after the 
bolus dose, K represents the first-order rate constant for overall 
elimination of drug from the fluid volume with volume V ,  A repre- 
sents the maximum amount of drug that can be taken up by tissue 
divided by the volume V ,  and B represents the dissociation constant 
of the tissue-bound drug divided by the volume V .  

Sets of (C,t)  data were generated using a digital computer pro- 
gram’ based on Eq. 1 for the rapid intravenous case of the hetero- 
geneous one-compartment open model with binding to one type of 

tissue (7). Seven sets of data were generated with the parameters 
A ,  B, K ,  and V held constant and Co varied. The dose was calcu- 
lated with Eq. 2: 

Sets of (CJ)  data were also generated with the parameters K and 
Cu held constant and A and B varied. All possible combinations 
were generated when A or B were assigned values of 0.003, 0.30, 3.. 
30., and 300. Since there were six values of A and six values of B, 
6 X 6 = 36 sets of (C,t) values resulted. 

Each of these sets, where applicable2, was analyzed according to  
the two-compartment open model with rapid intravenous injection 
represented by Eqs. 3-5 : 

where: 

LY + B = kiz + kzi + kei 0%. 4) 

and : 

ap = kiikci (Es. 5 )  

Preliminary estimates of the parameterswere obtained by the feather- 
ing or back-projection technique using semilogarithmic graph paper. 
Each applicable set of data was fitted by the method of least squares 
with an iterative digital computer program and an IBM 360/65 digi- 
tal computer to conform to the appropriate equation (i.e., Eq. 3). 
The graphical estimates of the parameters were used as starting 
values, and the concentrations were assigned reciprocal weights due 
to the large range of values. The least-squares estimates of param- 
eters V1, kI2,  k,l, and k,, obtained by this procedure are listed in Tables 
I and 11. 

RESULTS 

Simulated (C,t)  data obtained from Eq. 1 over about a 3-cycle log 
range of C values were found to  be readily fit by either a one- or 
two-term exponential equation (Tables I and 11). In most of the 
parameter space of A ,  B, and K values, such simulated data were 
fit almost perfectly (r2 value frequently equal t o  1 .OO) by Eq. 3. The 
usual interpretation in such cases would lead to assignment of the 

~~~ 

1 The authors are grateful to Dr. C. M. Metzler, who wrote the 
DFUNC subroutine, for allowing use of his program NONLIN with 
nonlinear equations. 

2 Generated sets of (C,r) data which did not go over a 2- or 3-cycle 
log range were not used. This only occurred in the case where CO and 
K were held constant. 
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Table 11-Data Simulated with the One-Compartment-One-Tissue Model According to Eq. 1, with CO Constant, and Fitted by NONLIN 
to the Classical Two-Compartment Open Model (Weighted Reciprocally)” 

~~~ 

0 . 3  0.003 0.482 2.58 0.300 0.993 1.000 1.000 
(0. 014)d (0.019) (0.021) (0.004) 

0 . 3  0.03 0.647 2.35 0.612 1.000 1.000 1 .ooo 
f0.021) (0.01 3) f0.028) (0.006) 

0 . 3  

3. 

0.3 ’0.448’ 2.44 2.26 ‘0.996’ 1.000 1 .ooo 
0.03 1.37 0.993 0.482 1.047 0.999 1.000 

(0.004) (0.002) (0.016) (0,001) 

(0.073) (0.032) (0.044) (0.019) 
3. 0.3 0.731 0.901 0.928 1.03 1.000 1 .ooo 

(0.042) (0.012) (0.064) fO.001) 
30. 3 .  ‘0.083’ ‘0.351’ ‘0,560‘ ‘1.003’ 1.000 1.000 

(0.005) (0.001) (0.035) (0.002) 
0.30 0.003 0.066 2.96 0.239 0.993 1.000 1.000 

(0.002) (0.008) (0.018) (0.004) 

The following parameters of the tissue binding model resulted in a single exponential. Data were fit t o  classical one-compartment model 
by a least-squares line: In C = In Co - Mt, where M is the slope. The CO and K are as above. 

A, mcg./ml. B,  mcg./ml. Slope, hr.-l Intercept C0rr.c 

0.03 
0.03 
0.3 
0 . 3  
3 .  
3. 

300. 
300. 

0.3 
3. 
3. 

30. 
3. 

300. 
3 .  

30. 

2.792 
2.973 
2.742 
2.972 
1.562 
2.971 
0.046 
0.279 

0.951 
0.998 
0.986 
1.000 
0.921 
0.998 
0.991 
0.993 

1.000 
1,000 
1.000 
1.000 
1.000 
1.000 
0.999 
1.000 

a Parameters of tissue binding model used to simulate data were: CO = 1.0 and K = 3.0. The parameters A and B were varied as indicated. b Co- 
efficient of determination. c Correlation coefficient for regression of predicted and observed ( i x , ,  simulated) C values. d Standard deviation of the 
estimated parameter. 

classical two-compartment open model from which kl?,  k?,, k , ~ ,  and 
Vp would be calculated from the parameters of Eq. 3. Deviations 
from the fit of Eq. 3 to data generated with Eq. 1 occurred at very 
low C values, but in actual practice such low C values would usually 
not be capable of being observed due to limitations of assay sensi- 
tivity (Fig. 1). It would be very difficult, if not impossible, to make 
the correct model assignment on the basis of data collected after 
only one or two doses. However, when simulated (C,r) data were 
generated with Eq. 1 for seven different doses, and each set of (C,r) 
data was fitted according to Eq. 3, then the calculated values of kI2 .  
k21, k , ~ ,  and V,, showed systematic trends in relation to dose, even 
though the values of A ,  B,  and K of Eq. 1 were held constant and 
only the CO varied (Table I). Also, in other such multiple simulations 
with constant Co and K values but variable A and B values, plots of 
the area 0 + m cersus dose, where the areas O+ m were estimated 
by integration of Eq. 3, were S-shaped. In some cases the plot was 
essentially linear but had a significant intercept. 

Integration of Eq. 1 yields: 

In each of the above cases, estimation of the area 0 -. m by the 
appropriate equation, Eq. 6, led to linear area 0 + a Dersus dose 
plots that passed through the origin. 

DISCUSSION 

The simulations strongly suggest that to determine whether the 
classical two-compartment open model or a nonlinear model, such 
as the heterogeneous one-compartment open model with binding to 
one type of tissue, is the best explanation of real plasma or whole 
blood concentration-time data, one must measure such concentra- 
tions after several (preferably four to  six different) doses of drug 
spread over a reasonable range. Also, the measurement of drug in 
several tissues of small animals as a function of dose, and shortly 
after intravenous injection, also aids in determining whether a non- 
linear model or the classical model applies. 

Common to all methods of estimating the extent of bioavailability 
after oral administration of a drug from plasma, serum, or whole 
blood concentration data is the necessity of estimating the area 0 + 

m under the concentration curve. Usually, this area is estimated by 
Eq. 7: 

In Eq. 7 the integral on the right-hand side is usually estimated by 
means of the trapezoidal rule from observed concentrations; CT 
represents the estimated concentration at time T, where T is the time 
that the log-linear phase commences; and represents the rate con- 
stant calculated from data in the log-linear phase. Hence, the second 
term on the right-hand side of Eq. 7 is an estimate of the area under 
the curve from time T to m . If real data actually arise from non- 
linear kinetics, then Eq. 7 would be inappropriate t o  estimate the 
total area. For the classical linear compartment models upon which 
Eq. 7 is based: 

However, for nonlinear models, Eq. 8 is invalid. For example, for 
the one-fluid-one-tissue model which leads to Eq. 1, it was 
shown (7) that: 

c+o 

Hence, these simulations and the discussed considerations have also 
emphasized problems involved in estimating the area under the 
concentration curve beyond the last sampling time. The limitations 
imposed by assay sensitivity and the mentioned considerations make 
this a real problem in bioavailability testing. 

It should be emphasized, as Kruger-Thiemer (13) pointed out, 
that nonlinear models will provide linear area 0 + L’CI’SIIS dose 
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lost from the central compartment by first-order kinetics. The re- 
sult shown as Eq. 6 in this report is a specific example of a non- 
linear case. 
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Figure 1-Data simulated with Eq. I fitted to the two-compartment 
operi model. The following values were used in this simulation: C ,  = 
10 mcg./ml., B = 1.0 mcg./ml., A = 10.0 mrg./ml., K = 2.75 hr?, 
and V = 0.5 l./kg. Dotted line indicates extrapolation uccording to 
the two-compartment analysis. Concen tration data were only gen- 
erated for t up to 10 hr. After fitting the data to the classical model, 
concentration dara were then generated up to 24 hr. to illustrate devia- 
tion. 

plots and that Eq. 10 of Wagner et al. (14) applies to many nonlinear 
models as well as linear models: 

FD 
c m  = pj& 

The principal requirement in such cases is that the drug must be 
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